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Abstract:  We present quantitative results for the excess phase noise of a frequency comb that employs 
microstructure fiber.  This fundamental phase noise arises from amplification of the input shot noise during 
supercontinuum formation in the fiber.  
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Broad phase-stabilized frequency combs can be generated by launching femtosecond pulses from a Ti:Sapphire laser 
into nonlinear microstructure fiber and phase-locking the resulting output frequency comb [1, 2].  While these 
combs have exhibited remarkable stability [1-6], noise on the comb will ultimately limit the metrological 
applications.  There are two major noise seeds on the input laser pulse that give rise to noise across the frequency 
comb: shot noise and low-frequency “technical” noise.  The amplitude noise on the supercontinuum arising from 
these noise seeds has been quantified [7-9], and the effect of these noise seeds on compression and coherence has 
been considered [10-12].  In Ref. [13], the carrier-envelope offset (CEO) phase noise induced by the laser technical 
noise was measured.  However, there have been no general predictions of the phase noise (in particular on the 
repetition frequency) induced during supercontinuum formation.  Here we derive a general expression that describes 
both amplitude and phase noise on the comb generated by any input noise seed.  We specifically quantify the phase 
noise floor resulting from the amplification of input shot noise, since this noise represents a fundamental limit.  As 
with the amplitude noise, we find that significant phase noise is generated from the input pulse shot noise during 
supercontinuum formation in the nonlinear fiber.   
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Fig 1. Basic setup analyzed.  The three time-domain perturbations from amplified shot noise each contribute to the white-noise floor of the RF 
heterodyne spectrum as detailed in Eq. (2) below.  
 

We consider the situation described in Fig. 1. The supercontinuum output is numerically simulated using the 
generalized nonlinear Schrödinger equation for multiple input pulses with different noise realizations to mimic the 
input pulse train [7, 8].  The electric field of the nth spectrally-filtered pulse versus time, t, can be written in general 
as  

 ( ) ( )( ) ( ) (01 n CEOi t in
n n rE t r t e e E t nT tδφ ∆φδ= + − − )nδ , (1) 

where ∆φCEO is the CEO phase shift per pulse and Tr is the inverse of the repetition rate fr.  The three small 
perturbations δrn, δφn and δtn are respectively the amplitude noise, phase noise on the comb offset frequency, and 
timing jitter (or phase noise on  fr).  If the corresponding power spectral densities (PSDs) of the pulse-averaged 
quantities are, Sr, Sφ and St , the output RF spectrum for the heterodyne beat from two distinct combs (with identical 
mean values) at a central optical frequency fopt is  
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Figure 2 shows one example of the three noise PSDs across the supercontinuum that results from shot noise on the 
input pulse.  Based on these data, the dominant contribution arises from the last timing jitter term; for the conditions 
of Fig. 2, the timing jitter is ~ 0.75 fs and gives rise to a white-noise floor of ~-72 dBc/Hz.  For a homodyne 
measurement (comb 1=comb 2 in Fig. 1), Eq. (2) is modified so that only the first two noise terms contribute (and 
are multiplied by two).  In this case, the amplitude noise dominates; for the conditions of Fig. 2, the amplitude noise 
is ~0.7% and gives rise to a white-noise floor of ~-120 dBc/Hz, as in Refs. [7, 9].   Finally, the amplitude noise and 
timing jitter are intimately connected since they both arise from the underlying electric-field fluctuations.    
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Fig. 2.  (a) Simulated supercontinuum generated in 15 cm of microstructure fiber by a 0.9 nJ pulse with a spectral width of 
49 nm and chirp of 260 fs2. (b) The broadband amplitude noise (Sr), CEO phase noise (Sφ ), and timing jitter noise (St ) 
assuming an 8 nm filter bandwidth. 
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